Properties of Conjugate:Complex Number

Polar form or Trigonometric form of Complex Number:

OA = |z|\cos \theta  = x

OP = |z|\sin \theta  = y

Since, z = x + iy

 \Rightarrow z = |z|(\cos \theta  + i\sin \theta )

\cos \theta  = 1 - \frac{{{\theta ^2}}}{{2!}} + \frac{{{\theta ^4}}}{{4!}} - ....................

or, \cos \theta  = 1 + \frac{{{{(i\theta )}^2}}}{{2!}} + \frac{{{{(i\theta )}^4}}}{{4!}} + ..............

\sin \theta  = \theta  - \frac{{{\theta ^3}}}{{3!}} + \frac{{{\theta ^5}}}{{5!}} - ....................

or, i\sin \theta  = i\theta  + \frac{{{{(i\theta )}^3}}}{{3!}} + \frac{{{{(i\theta )}^5}}}{{5!}} + .............

Therefore,

z = |z|\left( {1 + i\theta  + \frac{{{{(i\theta )}^2}}}{{2!}} + \frac{{{{(i\theta )}^3}}}{{3!}} + .......} \right)

z = |z|{e^{i\theta }}          (Euler form)

z = |z|cis\theta   ; cis\theta  = \cos \theta  + \sin \theta



Some Points about 'i':


1. If we square any number we will get a positive number.

But, imagine there is an imaginary number 'i' which when square gives a negative number -1.

{i^2} =  - 1

then, i = \sqrt { - 1}

Remember,

\sqrt { - 3} \sqrt { - 4}  \ne \sqrt {( - 3)( - 4)}

but, \sqrt { - 3}  \times \sqrt { - 4}  = \sqrt { - 1} \sqrt 3  \times \sqrt { - 1} \sqrt 4

or,\sqrt { - 3} \sqrt { - 4}  = i\sqrt 3  \times i\sqrt 4  = {i^2}\sqrt 3  \times \sqrt 4

or, \sqrt { - 3}  \times \sqrt { - 4}  =  - \sqrt 3  \times \sqrt 4   ( since {i^2} =  - 1)




2. i = i


{i^2} =  - 1


{i^3} = {i^2}i =  - i


{i^4} = {i^2}{i^2} = ( - 1) \times ( - 1) = 1


{i^5} = {i^4}{i^{}} = i

{i^6} = {i^4}{i^2} = 1 \times ( - 1) =  - 1

{i^7} = {i^4}{i^3} = 1 \times ( - i) =  - i

{i^8} = {i^4}{i^4} = 1

....................................................
...............................................

Therefore, power of 'i' repeats its values and can attain only four values i.e. i, -1, -i and 1

In general,
{i^{4n}} = 1 , {i^{4n + 1}} = i , {i^{4n + 2}} =  - 1 , {i^{4n + 3}} =  - i  , where n \in I


Reciprocal of i :

\frac{1}{i} = \frac{1}{i} \times \frac{i}{i} = \frac{i}{{{i^2}}} =  - i



Properties of Conjugate:

We know,

If z = x + iy

Conjugate of 'z',

\overline z  = x - iy



1. \overline {\overline z }  = z


2. z + \overline z  = 2{{\rm Re}\nolimits} (z)

Here Re(z) represents the Real Part of complex number z.

Any complex number is purely imaginary if and only if z + \overline z  = 0

Purely imaginary means Real part of complex number is zero i.e. Re(z) = 0 ( e.g. 2, 3, -4, -5/19 etc)

i.e. if z + \overline z  = 0 then number is purely imaginary 
and if number is purely imaginary then z + \overline z  = 0

Pure{{\rm Im}\nolimits}  \Leftrightarrow z + \overline z  = 0



3. z - \overline z  = 2{{\rm Im}\nolimits} (z)

Here Im(z) represents the Imaginary Part of complex number z.

Pure{{\rm Re}\nolimits}  \Leftrightarrow z - \overline z  = 0 

Purely Real means Imaginary part of complex number is zero i.e. Im(z) = 0 ( e.g. 2i, 8i, -90i etc )

Any complex number is purely imaginary if and only if z - \overline z  = 0



e.g. Show that z = {\left( {\frac{{2 - 3i}}{{4 + 5i}}} \right)^{2000}} + {\left( {\frac{{2 + 3i}}{{4 - 5i}}} \right)^{2000}} is purely Real ?


Since, z = {\left( {\frac{{2 - 3i}}{{4 + 5i}}} \right)^{2000}} + {\left( {\frac{{2 + 3i}}{{4 - 5i}}} \right)^{2000}}

To find the conjugate of z we replace i from -i,

Therefore,

\overline z  = {\left( {\frac{{2 + 3i}}{{4 - 5i}}} \right)^{2000}} + {\left( {\frac{{2 - 3i}}{{4 + 5i}}} \right)^{2000}}

so,z - \overline z  = 0

Therefore z is purely Real.



4. \overline {{z_1} \pm {z_2}}  = \overline {{z_1}}  \pm \overline {{z_2}}


5. \overline {\left( {\frac{{{z_1}}}{{{z_2}}}} \right)}  = \frac{{\overline {{z_1}} }}{{\overline {{z_2}} }}


6. \overline {{z_1}{z_2}}  = \overline {{z_1}}  \times \overline {{z_2}}


IMP
7. {z_1}\overline {{z_2}}  + {z_2}\overline {{z_1}}  = 2{{\rm Re}\nolimits} ({z_1}\overline {{z_2}} ) = 2{{\rm Re}\nolimits} ({z_2}\overline {{z_1}} )

Explanation, 
Since \overline {\overline z }  = z

Therefore,  {z_2}\overline {{z_1}}  = \overline {{z_1}\overline {{z_2}} }

And, z + \overline z  = 2{{\rm Re}\nolimits} (z)

Therefore,{z_1}\overline {{z_2}}  + {z_2}\overline {{z_1}}  = {z_1}\overline {{z_2}}  + \overline {{z_1}\overline {{z_2}} }  = 2{{\rm Re}\nolimits} ({z_1}\overline {{z_2}} )




Comments

Popular posts from this blog

Properties of Modulus & Argument: Complex Number

Fractional Part function

Geometrical Meaning of Argument and Modulus - I: Complex Number